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In heteroepitaxy, the mismatch of lattice constants between the crystal film and the substrate causes misfit
strain and stress in the bulk of the film, driving the surface of the film to self-organize into various nanostruc-
tures. Below the roughening transition temperature, an epitaxial surface consists of facets and steps and
changes its morphology by lateral motion of steps. In this paper, we present a 2+1-dimensional continuum
model for the long-range elastic interaction on stepped surface of a strained film. The continuum model is
derived rigorously from the discrete model for the interaction between steps; thus it incorporates the discrete
features of the stepped surfaces. Examples show that our continuum model is much more accurate as an
approximation to the discrete model than the traditional continuum approximation. Moreover, in the linear
instability of a planar surface, our continuum model gives the transition from step bunching instability to step
undulation instability as the distance between adjacent steps increases, which agrees with the experimental
observations and the results of discrete models and is missing using the traditional continuum approximation.
Numerical simulations of the surface evolution using our model in the nonlinear regime show several different
surface morphologies, including the morphology of step bunching which cannot be obtained using the tradi-
tional continuum approximation.
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I. INTRODUCTION

There has been extensive research on the morphological
evolution of surfaces in heteroepitaxial growth, in which the
epitaxial film is under stress due to the misfit between the
film and the substrate. These stress-driven self-assembled
nanostructures exhibit interesting electronic and optical
properties and have various potential applications in semi-
conductor industry.1–4

Many continuum models can be found in the literature on
the surface morphological evolution under elastic effects, in
which the surfaces are modeled as continuously changed
profiles without any discrete structures on them.2,5–16 The
stress in the solid is a destabilizing factor while the surface
energy is a stabilizing one, and the planar surface of a
stressed solid is unstable for perturbations with wave num-
bers less than a critical value.6–10 These models work in the
regime above the roughening transition temperature. Below
the roughening transition temperature, an epitaxial surface
consists of facets and steps, which makes the continuum ap-
proaches mentioned above not apply directly. In the step-
flow model, a stepped surface changes its morphology by
lateral motion of steps.1,4,17–19 For an unstrained film, the
elastic effect of a step can be viewed as a distribution of
force dipole on the film surface along the step. The dipole
interaction force decays as 1 /r3 for two parallel straight steps
with distance r. The elastic effect of a step on the surface of
a strained film �in heteroepitaxy� can be approximated by a
distribution of force monopole along the step. The force
monopole interaction has a long-range effect, which decays
as 1 /r for two parallel straight steps with distance r. Expan-
sions with higher-order terms for the elastic effects of surface
steps were obtained in Refs. 20–22. For an epitaxial surface
consisting of uniform straight step array, the force monopole
effect is destabilizing while the step line energy and force
dipole effect are stabilizing.19,23–29

Several discrete models have been proposed for elastic
interactions and dynamics of straight and parallel steps �1
+1-dimensional models�, e.g., by Alerhand et al.,19 Tersoff
and co-workers,24,25 Duport et al.,26,27 Ozdemir and
Zangwill,30 Kaganer and Ploog.31 The elastic interactions
cause step bunching instability on strained epitaxial surfaces.
Continuum 1+1-dimensional models have also been pro-
posed by Lançon and Villain,32 Kaganer and Ploog,31 and
Shenoy and Freund.33 However, for the long-range force
monopole interaction on strained epitaxial surfaces, the tra-
ditional expression above roughening transition temperature
was directly used in these models.31,33 Xiang and E34,35 de-
rived a continuum model rigorously by taking the continuum
limit of the discrete step dynamics models of Tersoff and
co-workers24,25 and Duport et al.26,27 For the long-range
force monopole effect, besides the widely used integral ex-
pression above the roughening transition temperature, there
is another term incorporating the discrete features of the
stepped surface in their continuum model. This additional
term is crucial in modeling the step bunching instability on
stepped surfaces.35

In reality, the steps cannot keep straight and tend to me-
ander under many effects including the elastic
interactions.1,4,23,36 The force dipole effect between curved
steps on unstrained epitaxial surfaces are relatively well
modeled in the frameworks of both the discrete step
dynamics37,38 and the continuum model.32,37,39–42 In the
framework of the continuum theory, it is well known that the
elastic effect on such a stepped surface of unstrained film is
quite different from that on an epitaxial surface above rough-
ening transition temperature due to the discrete structures on
the stepped surface.

Only a few 2+1-dimensional models available in the lit-
erature account for the long-range force monopole interac-
tion on stepped surfaces, mostly based on discrete step inter-
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action or dynamics. Tersoff and Pehlke23 analyzed step
undulation instability of stepped Si�001� surface which is
subject to force monopole effect at the steps and their results
agree well with the experimental observations obtained by
Tromp and Reuter.36 Houchmandzadeh and Misbah28 studied
the force dipole and force monopole elastic interactions be-
tween slightly modulated steps. Kukta and Bhattacharya43

proposed a 2+1 step-flow model that accounts for both the
elastic effects and terrace diffusion. Léonard and Tersoff29

compared the step bunching and step meandering instabili-
ties of a stepped surface under stress for both permeable and
impermeable steps. Shenoy44 studied the growth of epitaxial
nanowires by controlled coarsening of strained islands.
Haußer et al.45 proposed a step-flow model for the heteroepi-
taxial growth of strained, substitutional, and binary alloy
films with phase segregation. Kaganer and Ploog31 investi-
gated the energetics of strained axially symmetric cone-
shaped stepped surfaces using both approaches of discrete
step dynamics and continuum equation. However, their con-
tinuum model for the long-range elastic effect on strained
stepped surface was obtained as a simple average of the force
monopole interaction between steps, which is the same as the
traditional integral expression above roughening transition
temperature. Ramasubramaniam and Shenoy46 generalized
the continuum model in 1+1 dimensions based on con-
tinuum variational principles proposed by Shenoy and
Freund33 to 2+1 dimensions. Even though the discrete fea-
tures of the step line energy and force dipole interaction be-
tween steps were included in their models, for the long-range
elastic interaction due to misfit, the traditional expression
above roughening transition temperature was directly used.
A continuum theory that accounts for the long-range elastic
effect and the discrete features for a strained epitaxial film
with a general stepped surface in 2+1 dimensions, as the
continuum equation proposed in Refs. 34 and 35 for a sur-
face with straight steps, is still lacking.

In this paper, we present a 2+1-dimensional continuum
model for the long-range elastic interaction on stepped sur-
face of a strained film. The continuum model is derived rig-
orously from the discrete model for the interaction between
steps. As in the 1+1 continuum equation obtained in Refs.
34 and 35, the continuum model includes additional terms
accounting for the discrete features of the stepped surfaces
besides the traditional integral expression above roughening
transition temperature. We validate our model by comparing
the elastic interaction and linear instability of a planar sur-
face with the results of the discrete model. Examples show
that our continuum model is much more accurate as an ap-
proximation to the discrete model than the traditional con-
tinuum approximation. Moreover, in the linear instability of
a planar surface, our continuum model gives the transition
from step bunching instability to step undulation instability
as the distance between adjacent steps increases, which
agrees with the experimental observations and the results of
discrete models and is missing using the traditional con-
tinuum approximation. Numerical simulations of the surface
evolution using our model in the nonlinear regime show sev-
eral different surface morphologies, including the morphol-
ogy of step bunching which cannot be obtained using the
traditional continuum approximation. Note that rigorous

derivation of our model can be found in a previous paper.47 A
simplified derivation for an axisymmetric conical-stepped
surface is given in this paper �see the Appendix�.

The surface instabilities caused by the above-mentioned
elastic effects are energetic instabilities, which are different
from the kinetic instabilities during growth caused by, e.g.,
the step edge barriers.1,48–50 Extensive research can be found
in the literature on the kinetic instability. The step edge bar-
riers also modify the mobility for the surface evolution under
elastic effects. The kinetic instability and the effect of the
step edge barriers on the mobility were both incorporated in
the 1+1-dimensional continuum model derived from the dis-
crete step dynamic models.34 The anisotropic mobility due to
step edge barriers in 2+1 dimensions was obtained by Mar-
getis and Kohn.42 The kinetic instabilities and step edge bar-
riers are neglected in this paper and will be considered in the
future work.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the long-range elastic effect on stepped
heteroepitaxial surfaces and the available continuum models.
In Sec. III, we present our continuum model for the long-
range elastic interaction on stepped epitaxial surfaces. In Sec.
IV, we examine the accuracy of our model by an example of
comparison with the discrete model. In Sec. V, we study the
linear instability of a planar surface to small perturbations. In
Sec. VI, we present some simulations of evolution of the
stepped surfaces under elastic effects in the nonlinear re-
gime. In Sec. VII, we summarize the results.

II. LONG-RANGE ELASTIC EFFECT ON STEPPED
HETEROEPITAXIAL SURFACES AND AVAILABLE

CONTINUUM MODELS

In this section, we briefly review the long-range elastic
effect on stepped heteroepitaxial surfaces and available con-
tinuum models for it. More details can be found in the books
and reviews1–4 and other references in this section.

In heteroepitaxial growth, the misfit of the lattice con-
stants is defined by

�0 =
af − a

a
, �1�

where af and a are the lattice constants of the film and the
substrate, respectively. This misfit results in elastic strain and
stress fields in the film and the substrate. For an isotropic
film with flat surface and infinite substrate, there is a constant
stress field in the bulk of the film. When the height of the
film is in the z direction, the nonzero components of the
stress tensor in the film are

�xx = �yy = �0 =
2G�1 + ���0

1 − �
, �2�

where G is the shear modulus, and � is the Poisson ratio.
For a heteroepitaxial film with nonflat surface, the elastic

state has to be determined by solving elasticity systems in
the film and the substrate. For a film with slightly modulated
surface subject to the misfit stress, the elasticity system is
approximately equivalent to that in a film with flat surface
and subject to a traction1–4,6–10
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T = − �0�hx,hy,0� �3�

on its surface, where h�x ,y� is the height of the surface. In
this case, the elasticity problem can be solved explicitly us-
ing the Green function.51

Below the roughening transition temperature, an epitaxial
surface consists of atomic-height steps and atomic-flat ter-
races �see Fig. 1�. A step on a heteroepitaxial surface can be
considered as a distribution of force monopole along the step
with strength �0a in the normal direction of the
step1,4,19,23–29,31,33,43,44 �see also Eq. �3��. Using Eq. �3� and
the Green function, the interaction energy due to misfit be-
tween two steps �1 and �2 is

Emisfit��1,�2� =
�0

2a2

2�G
�

�1

�
�2

��1 − ��
n1 · n2

r

+ �
�n1 · r��n2 · r�

r3 �dl1dl2, �4�

where dl1 and dl2 are line elements along �1 and �2, respec-
tively, r is the vector between a point on �1 and a point on �2
with length r, and n1 and n2 are the unit normal vectors of �1
and �2, respectively. The self-misfit energy of a step � is thus
Emisfit���= 1

2Emisfit�� ,��.
In some continuum theories, the continuum expressions

for strained epitaxial surface above roughening transition
temperature were directly used for stepped surfaces,31,33,46 in
which the surface profile is a smooth function h�x ,y� and the
traction on the surface is given by Eq. �3�. Using this idea,
the misfit elastic energy in the continuum framework is given
by

Emisfit = −
�1 − ���0

2

4�G
�

−�

� �
−�

�

h�x,y�

���
−�

� �
−�

� �x − 	�hx�	,
� + �y − 
�hy�	,
�
��x − 	�2 + �y − 
�2�3/2 d	d
�

�dxdy . �5�

Xiang and E34,35 rigorously derived a continuum model
for epitaxial surfaces with straight steps by taking the con-
tinuum limit of the discrete models of steps.24–27 Their con-
tinuum model for the misfit elastic energy on a surface with
straight steps, without nucleation of new steps, is

Emisfit = −
�1 − ���0

2

2�G
�

−�

� �h�x��
−�

� h��	�
x − 	

d	

+ a�hx�x��log�hx�x���dx . �6�

The first term in this expression is the same as the misfit
elastic energy above the roughening transition temperature,
which is given by Eq. �5� when h is uniform in y direction,
and which was used also for stepped surfaces in Ref. 33. The
second term in this expression is the correction due to the
discrete nature of the stepped surface.

Besides the misfit elastic energy, there are step line energy
and the elastic energy due to force dipole interaction for a
stepped epitaxial surface. The total energy on a stepped sur-
face due to elastic effects can be written as

Etotal = Eline + Edipole + Emisfit, �7�

where, in the continuum framework,

Eline = �
−�

� �
−�

�

g1��h�dxdy �8�

is the step line energy, with g1 being the step line energy
density, and

Edipole = �
−�

� �
−�

� g3

3
��h�3dxdy �9�

is the energy due to the force dipole interaction, with g3
being the strength of this interaction. The step line energy
and the elastic energy due to force dipole interaction are
relatively well known in the continuum framework in the
literature.1,4,31–35,37,39–42,46

A stepped surface changes its morphology by motion,
nucleation, and annihilation of steps, instead of changing
continuously. Based on the Burton-Cabrera-Frank �BCF�
theory,17 the evolution equation is given by30,32–35,37,39–42,46

�h

�t
= � · �D � �� , �10�

where D is the mobility depending on the adatom diffusion
on the terraces and attachment detachment of adatoms along
steps. The total chemical potential � on a misfit-strained
stepped surface can be written as

� = �s + �d + �m. �11�

The first term �s is the chemical potential due to the step line
energy

�s =
�Eline

�h
= − � · 	g1

�h

��h�
 , �12�

and the second term �d is the chemical potential due to the
interaction between steps in unstrained films which can be
approximated by force dipole interaction

�d =
�Edipole

�h
= − � · �g3��h� � h� . �13�

The last term

Terrace

Step

FIG. 1. A stepped epitaxial surface.
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�m =
�Emisfit

�h
�14�

in the above total chemical-potential expression is the con-
tribution of the long-range elastic interaction due to the mis-
fit.

Using Eq. �5�, the chemical potential due to misfit is
�m�x ,y�=�m

0 �x ,y�, where

�m
0 �x,y� = −

�1 − ���0
2

2�G

��
−�

� �
−�

� �x − 	�hx�	,
� + �y − 
�hy�	,
�
��x − 	�2 + �y − 
�2�3/2 d	d
 .

�15�

However, this expression is the same as that above the
roughening transition temperature, and the discrete features
of the stepped surface are not included. In the continuum 1
+1-dimensional model of Xiang and E,34,35 the chemical po-
tential due to misfit is

�m�x� = −
�1 − ���0

2

�G
�

−�

� h��	�
x − 	

d	 −
�1 − ���0

2a

2�G

hxx�x�
�hx�x��

.

�16�

The integral term in this expression is the corresponding
term of Eq. �15� when h is uniform in the y direction. The
second term in this expression incorporates the discrete na-
ture of the stepped surface, which is crucial in modeling the
step bunching instability on stepped surfaces.35 In this paper,
we shall generalize this continuum model to 2+1 dimensions
for epitaxial surfaces with curved steps.

III. CONTINUUM MODEL

In this section, we present our 2+1-dimensional con-
tinuum model for the long-range elastic effect on stepped
surfaces, which is derived from the discrete model for the
interaction between steps.

We first describe the discrete model. Consider a stepped

surface whose profile is given exactly by h̃�x ,y�. Assume
that �� j�, j= . . . ,−2 ,−1 ,0 ,1 ,2 , . . ., are steps on the surface.
Using the relation

�h̃ = − a

j

��� j�n j �17�

in Eq. �15�, where ��� j� is the one-dimensional Dirac delta
function in the normal direction n j of the step � j, the chemi-
cal potential at a point X= �x ,y� on step �n is

�̃m�x,y� = �̃m
int�x,y� + �̃m

self�x,y� , �18�

with

�̃m
int�x,y� =

�1 − ���0
2a

2�G 	

j�n
�

�j

�X − X1� · n j�X1�
�X − X1�3 dl


�19�

and

�̃m
self�x,y�

=
�1 − ���0

2a

2�G 	�
−�

�

��
�d
�
�


�X − X1� · n
�X1�
�X − X1�3 dl
 ,

�20�

where X1 is a point that varies along the steps in these line
integrals, the curve �
= �X0+
nn�X0� :X0��n�, and n 
 is
its unit normal vector. Note that for the two possible direc-
tions of the normal direction of a step, we choose it to be the
direction in which the surface height is decreasing. The
above formulas for chemical potential can also be obtained
by taking variation of the self-energy and interaction energy
with respect to the position of the step.

The delta function ��
� in the chemical potential due to
the self-interaction �̃m

self�x ,y� has to be regularized to avoid
nonphysical singularity �same notation is used for simplic-
ity�. The width of the regularization of ��
�, which reflects
the detailed structure of the step and can be determined from
atomistic calculations, is of the order of the lattice constant
a. The regularization or cutoff is commonly used to remove
nonphysical singularities in the models of steps.4,19,29,43,44

Although Eqs. �18�–�20� give an exact expression for the
misfit-induced long-range elastic interaction on a stepped
surface, in the framework of a continuum model, the stepped
surface is often described by a smooth profile h�x ,y� without
resolving the details of the steps. In our continuum model,
the surface profile h�x ,y� connects the steps smoothly so that
a step �n with height hn is the contour line h�x ,y�=hn �see
Fig. 2�.

From the discrete model given by Eqs. �18�–�20�, letting
the lattice constant a→0 in the length unit of the continuum
model, which means that a large number of steps are con-
tained in a unit area in the continuum model, we have the
continuum model for the long-range elastic interaction on a
stepped surface in heteroepitaxy in 2+1 dimensions

�m�x,y� = −
�1 − ���0

2

2�G

��
−�

� �
−�

� �x − 	�hx�	,
� + �y − 
�hy�	,
�
��x − 	�2 + �y − 
�2�3/2 d	d


−
�1 − ���0

2a

2�G
�� · 	 �h

��h�
log
2�rc��h�

a

+
�hD2h�Th

��h�3 � , �21�

where rc is a parameter depending on the core of the step

log rc = �
−�

�

��
�log�
�d
 , �22�

D2h is the Hessian matrix of h�x ,y�, and �hD2h�Th=hx
2hxx

+2hxhyhxy +hy
2hyy. In this continuum expression, the term of

the integral over the whole surface is the same as the expres-
sion of the misfit-induced elastic interaction above the
roughening transition temperature, and two additional terms
incorporate the atomic feature of the stepped surface.
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It is easy to verify that this continuum model is reduced to
the 1+1-dimensional model for a surface with straight steps
given by Eq. �16�.34,35 For an axisymmetric conical-
moundlike-stepped surface h�r� with h��r��0, where r is the
radial coordinate, the result becomes

�m�r� =
�1 − ���0

2

�G
�

0

� 	K�m�
r̂ + r

+
E�m�
r̂ − r


h��r̂�dr̂

+
�1 − ���0

2a

2�G
	1

r
log

2�rc�h��r��
a

+
h��r�
h��r�
 , �23�

where K�m�=�0
�/2 d�

�1−m sin2 �
and E�m�=�0

�/2�1−m sin2 �d�

are the complete elliptic integrals of the first and second
kinds, respectively, with m= 4r̂r

�r̂+r�2 .
The detailed derivation of Eq. �21� is technical and has

been given in a previous paper.47 To show the main ideas, we
give a simplified derivation for Eq. �23� for an axisymmetric
conical-stepped surface in the Appendix.

The derived continuum expression of chemical potential
given by Eq. �21� can be written as the variation of an elastic
energy

Emisfit = −
�1 − ���0

2

4�G
�

−�

� �
−�

�

h�x,y�

���
−�

� �
−�

� �x − 	�hx�	,
� + �y − 
�hy�	,
�
��x − 	�2 + �y − 
�2�3/2 d	d
�

�dxdy +
�1 − ���0

2a

2�G
�

−�

� �
−�

�

��h�log
2�rc��h�

ea
dxdy ,

�24�

where the constant e is the base of the natural logarithm. The
first term in this expression is the traditional expression of
the misfit elastic energy above the roughening transition tem-
perature on surfaces with small amplitude modulation. The
second term is the additional term we obtained which is due
to the contribution to the step line energy from the force
monopole interaction and which gives the two local terms in
the chemical potential in Eq. �21�.

For a surface with straight steps, this continuum model is
reduced to the 1+1-dimensional model given by Eq. �6�.34,35

Note that in the 1+1 model, the term of �hx� with constant
coefficient in the total energy, i.e., the step line energy with
constant density, plays no role in the surface morphology
evolution when nucleation is neglected; thus this kind of

term does not appear in the 1+1 model in Eq. �6�. The total
misfit elastic energy of a surface consisting of a uniform step
train has also been calculated using the discrete model,19

whose density is

emisfit = −
�1 − ���0

2a2

2�Glt
log

lt

�r0
, �25�

where lt is the distance between two adjacent steps, and r0 is
a cutoff distance. In this case, using the relation �h��x��
=a / lt, our model �24� gives the misfit elastic energy density

emisfit = −
�1 − ���0

2a2

2�Glt
log

elt

2�rc
, �26�

which agrees with the result of the discrete model. �Note that
the values of the cutoff distance are different in these two
models.�

Finally, using Eqs. �10�–�13� and �21�, we have the mor-
phological evolution equation of a stepped surface under
elastic effects

�h

�t
= � · �D � �− � · 	g1

�h

��h�
+ g3��h� � h
 −

�1 − ���0
2

2�G

��
−�

� �
−�

� �x − 	�hx�	,
� + �y − 
�hy�	,
�
��x − 	�2 + �y − 
�2�3/2 d	d


−
�1 − ���0

2a

2�G
� · 	 �h

��h�
log	2�rc��h�
a



−

�1 − ���0
2a

2�G

�hD2h�Th

��h�3 �� . �27�

The first two terms in this equation containing parameters g1
and g3 are due to the step line energy and the force dipole
interaction between steps, respectively. The last three terms
come from the long-range force monopole interaction due to
the misfit stress. The anisotropic mobility tensor D on a
stepped surface has been obtained by Margetis and Kohn.42

In this paper, we focus on the long-range elastic effect and
assume that the mobility D is isotropic which corresponds to
the case of no barriers for the adatom attachment to the
steps.42

Note that our continuum model is derived from a discrete
model based on the simplifications of elastic isotropy and
same elastic constants in the film and the substrate. The elas-
tic effects of a step are described by the widely used approxi-
mation of force dipole on unstrained film and force mono-
pole in the presence of the misfit. Removal of these
simplifications will be considered in future work.

In this paper, we will use our continuum model to study
the linear instability and evolution in the nonlinear regime
for a planar surface representing a uniform straight step ar-
ray. The domain size L=Nlt, where N is the number of steps
in the domain and lt is the average distance between adjacent

steps. Scaling x and y by
Nlt

2� , h by Na
2� , and t by

�Nlt�3Na

Dg1�2��4 , we
have the following dimensionless evolution equation in this
case:

FIG. 2. �Color online� A stepped surface described by a smooth
profile h�x ,y�.
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�h

�t
= ��− � · 	 �h

��h�
+ �1��h� � h


− �2�
−�

� �
−�

� �x − 	�hx�	,
� + �y − 
�hy�	,
�
��x − 	�2 + �y − 
�2�3/2 d	d


− �3 � · 	 �h

��h�
log��4��h�� − �3
�hD2h�Th

��h�3 � , �28�

where the dimensionless constants

�1 =
g3a2

g1lt
2 , �2 =

�1 − ���0
2Na

4�2g1G
, �3 =

�1 − ���0
2a

2�g1G
,

�4 =
2�rc

lt
. �29�

The parameter �1 is related to the force dipole interaction
and parameters �2 and �3 are from the force monopole in-
teraction �2��2 /�3=N is the number of steps in the domain�.
These parameters indicate the relative strength of the elastic
effects with respect to the step line energy. The parameter �4
is a factor inside the logarithm term.

IV. COMPARISON WITH DISCRETE MODEL

In this section, we examine the accuracy of our model by
an example of comparison with the discrete model. Specifi-
cally, for a given stepped surface and its corresponding
smooth profile, we compare the relative errors of our con-
tinuum model �m�x ,y� given in Eq. �21� and the traditional
continuum approximation �m

0 �x ,y� given in Eq. �15�, respec-
tively, with respect to the discrete model �̃m�x ,y� given in
Eqs. �18�–�20�.

We consider the following smooth surface profile:

h�x,y� =
a

lt
�L − x + �L cos	8�x

L
+

2�y

L

� , �30�

with �=0.015 92, and the average distance between steps lt
=20a. The surface profile is a periodic function with period
L plus a linear function. Assume that there are N steps in the
domain �0,L�2, and the location of the step � j is the contour
line of h�x ,y� for h=hj = ja−h0, j=1,2 , . . . ,N, where h0 is a
constant. We evaluate the chemical potential at the point
�x ,y�= �L /2,L /2�. The constant h0 is chosen so that this
point is on a step. A surface profile and location of the steps
are shown in Fig. 3.

The traditional continuum approximation �m
0 �x ,y� given

by Eq. �15� can be computed using the fast-Fourier-
transform �FFT� method,

��m
0 �̂

k1,k2
= −

�1 − ���0
2

2�G
L�k1

2 + k2
2�1/2ĥk1,k2

, �31�

where ĥk1,k2
and ��m

0 �̂

k1,k2
are the Fourier coefficients of the

term ei�k1x+k2y� for h�x ,y� �the periodic part� and �m
0 �x ,y�,

respectively. Our continuum model �m�x ,y� given in Eq.
�21� can also be computed using FFT. The parameter rc

=0.2w0, which is obtained from Eq. �22� with

��
� = � 1

2w0
	1 + cos

�


w0

 , − w0 � 
 � w0

0, otherwise.
� �32�

We choose the width of the regularized delta function w0
=1.5a.

Recall that the discrete model �̃m�x ,y� given in Eqs.
�18�–�20� can be obtained by inserting the exact stepped sur-

face profile h̃�x ,y� given by Eq. �17� into Eq. �15�. We use
Eqs. �15� and �17� directly to compute �̃m�x ,y�, using the
unit normal vector n=−�h�x ,y� / ��h�x ,y��, and the regular-
ized delta function in Eq. �32� with the variable 
 replaced
by the distance from a point on the surface to the nearby step
� j,

d = −
h − hj

�hx
2 + hy

2�1/2 −
1

2

hx
2hxx + 2hxhyhxy + hy

2hyy

�hx
2 + hy

2�5/2 �h − hj�2

+ O��h − hj�3� . �33�

The derivation of this formula can be found in Appendix A in
Ref. 47. Then we can also use FFT to compute the discrete
model �̃m�x ,y�.

Figure 4 shows the relative errors of our continuum model
�m�x ,y� and the traditional continuum approximation
�m

0 �x ,y�, respectively, with respect to the discrete model
�̃m�x ,y�, at the point �x ,y�= �L /2,L /2� with different values
of N. From the figure, we can see that as a continuum ap-
proximation to the discrete model �̃m�x ,y�, the error of our
model �m�x ,y� is much smaller than that of the traditional
approximation �m

0 �x ,y�. When N=10, our model gives rela-
tive error 0.7%, while the relative error of the traditional
continuum model is 52%. This example shows that our con-
tinuum model �m�x ,y� given in Eq. �21� is more accurate
than the traditional continuum approximation �m

0 �x ,y� given
in Eq. �15�.

Note that in this example of comparison, we compute the
discrete model �̃m�x ,y� using Eqs. �15� and �17� and a regu-
larized delta function in Eq. �32�. In this formulation, the line
integrals in �̃m

int�x ,y� in Eq. �19� are approximated by convo-
lutions with the regularized delta function, as in �̃m

self�x ,y� in
Eq. �20�. Convergence tests as the width of the regularized
delta function goes to 0 show that the relative error of this

(a)
x

y

L

L

0

(b)

FIG. 3. �Color online� �a� The smooth surface given by Eq. �30�
and �b� the location of steps for N=10.
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approximation is less than 2%, which is much smaller than
the relative error of the traditional continuum approximation
�m

0 �x ,y� �see Fig. 4�. Thus this numerical approximation
does not change the conclusion of the comparison.

V. LINEAR INSTABILITY

In this section, we use our continuum equation in Eq. �28�
to study the linear instability of a planar surface �represent-
ing a uniform straight step array� to small perturbations.
Consider

h�x,y,t� = − x + �eik1x+ik2y+
t �34�

in the length units of Eq. �28�, where the amplitude of the
perturbation � is very small. Inserting this expression into
Eq. �28� and keeping the O��� terms, we obtain the following
dispersion relation:


 = �k1
2 + k2

2��− �2�1 + �3�k1
2 − �1 + �1 + �3 log �4�k2

2

+ 2��2�k1
2 + k2

2�1/2� , �35�

where the parameters are given in Eq. �29�. When 
�0, the

planar surface is stable to the small perturbation with mode
�k1 ,k2�; when 
�0, the planar surface is unstable to the
small perturbation with this mode.

The last term in the dispersion relation in Eq. �35� is a
destabilizing term, which is from the integral term in the
evolution equation �28� and is the main effect of the force
monopole interaction due to the misfit. This destabilizing
effect is the same as that in the classical stress-driven mor-
phology instability.6–10 The step line energy, which gives the
term −1 in the coefficient of k2

2 inside the brackets in the
dispersion relation, and the force dipole interaction, which
gives the terms containing �1 in the dispersion relation, are
both stabilizing. The additional nonlinear terms due to the
misfit force monopole interaction give the two terms contain-
ing �3 in the dispersion relation, which modify the instabil-
ity.

Figure 5 shows some examples of this dispersion relation.
The parameters are chosen as follows: g1=0.03 J /m2, g3
=8.58 J /m2 �g3 /g1=286�,52 the step height a=0.27 nm, the
elastic moduli �=0.25 and G=3.8�1010 Pa, and the misfit
�0=0.024. The core parameter rc of a step is assumed to be
a. The number of steps in a period N=20. Figure 5�a� shows
the dispersion relation when the distance between adjacent
steps lt=25a. We can see that the unstable region, i.e., the
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region where 
 is positive, is a bounded region near the
origin, which means small wave-number instability. We can
also see from Fig. 5�a� that the most unstable mode of 
 is
attained on the k2 axis, which implies that in this case the
dominant instability is step undulation. Figure 5�b� shows the
dispersion relation when lt=50a, in which the instability also
occurs at small wave numbers. The most unstable mode of 

is attained on the k1 axis, which implies that in this case the
dominant instability is step bunching. The dispersion relation
for the case lt=120a shown in Fig. 5�c� is qualitatively simi-
lar to that for the case lt=25a shown in Fig. 5�a�. When lt is
very large, as shown in Fig. 5�d� for the case lt=280a, the
unstable region is unbounded in k2 direction, and the positive
value of 
 is unbounded as k2 increases along the k2 axis.
This means that the undulation instability occurs for any
small perturbation along the steps.

Examples of the dispersion relation for small ratio of
g3 /g1 are shown in Fig. 6, where g1=0.03 J /m2, g3
=0.03 J /m2, i.e., g3 /g1=1, and other parameters are the
same as those in Fig. 5.

In the above examples, we see transitions between step
bunching instability and step undulation instability and tran-
sitions between bounded unstable region to unbounded un-
stable region. The step bunching instability dominates when
the coefficient 2�1+�3 of the k1

2 term is less than the coeffi-
cient 1+�1+�3 log �4 of the k2

2 term in the dispersion rela-
tion in Eq. �35�; when the former is greater, step undulation
instability dominates. The unstable region changes from
bounded to unbounded when the coefficient 1+�1
+�3 log �4 of the k2

2 term in the dispersion relation changes
its sign from positive to negative.

These transitions are summarized in Fig. 7 in terms of the
distance between adjacent steps lt

53 and the relative value of
the misfit �0 with respect to ��1−���g1 /2�1+��2Ga�1/2, for
fixed value of the ratio g3 /g1. Figure 7�a� shows the case of
a large ratio g3 /g1 :g3 /g1=286. For a relative small misfit,
the horizontal constant-misfit line intersects the boundary be-
tween step bunching dominant region and step undulation
dominant region twice. As lt increases, the dominant insta-
bility changes from step undulation to step bunching and
then back to step undulation. For a very large lt, any pertur-
bation in the direction along the steps causes instability. See
Fig. 5 for the dispersion relation for different values of lt in
this case �where �0 / ��1−���g1 /2�1+��2Ga�1/2=0.51�. For a
relative large misfit in Fig. 7�a�, the step undulation instabil-
ity always dominates. For a small lt, only perturbations with
small wave numbers in the direction along the steps cause
the step undulation instability; while for a large lt, any per-
turbation in the direction along the steps is unstable. Figure
7�b� shows the case of a small ratio g3 /g1 :g3 /g1=1. In Fig.
7�b�, any horizontal line of constant misfit intersects the
boundary between step bunching dominant region and step
undulation dominant region once. As lt increases, the domi-
nant instability changes from step bunching to step undula-
tion, and for a very large lt, any perturbation in the direction
along the steps causes instability. See Fig. 6 for the disper-
sion relation for different values of lt in this case. The tran-
sition from step bunching instability to step undulation insta-
bility as lt increases has been observed in experiments36 and
is shown using discrete step dynamics models.23,29

Finally, we compare our linear instability results with
those using the traditional continuum approximation �m

0 �x ,y�
in Eq. �15�, which corresponds to the case where the terms
containing �3 are removed in our dispersion relation in Eq.
�35�. Figure 8 shows the dispersion relation using �m

0 �x ,y�
when all the parameters are the same as those in the disper-
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undulation instability �e.g., the dispersion relation in Figs. 5�a� and
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the direction along the steps is unstable �e.g., the dispersion relation
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ZHU, XU, AND XIANG PHYSICAL REVIEW B 79, 125413 �2009�

125413-8



sion relation using our model shown in Fig. 6. Comparing
Fig. 8 with Fig. 6, we can see that by using the traditional
continuum approximation �m

0 �x ,y�, the step bunching insta-
bility always dominates and there is no transition from step
bunching instability to step undulation instability as lt in-
creases, which does not agree with the experimental
observations36 and the analytical results using discrete step
dynamics models.23,29 This comparison shows that the addi-
tional nonlinear terms in our continuum model are crucial to
include the discrete features of the stepped surface.

VI. EXAMPLES OF NONLINEAR EVOLUTION

In this section, we present some examples of evolution of
the stepped surfaces in the nonlinear regime using our con-
tinuum model �28� with dimensionless constants in Eq. �29�.
We focus on the surface morphology in the early stage of
nonlinear regime.

In the simulations, we choose g1=0.03 J /m2, g3
=8.58 J /m2, the step height a=0.27 nm, the elastic moduli
�=0.25, and G=3.8�1010 Pa. The core parameter rc of a
step is assumed to be a.

We use the pseudospectral method with the FFT �Ref. 54�
under periodic boundary conditions in the simulations. For
the time discretization, we use the trapezoid rule for the lin-
ear equation obtained in the linear instability analysis, and
the forward Euler method for the remaining part after the
linear equation is subtracted from the full nonlinear equation.
The simulation domain is �0,2��� �0,2�� divided into
128�128 grid points. Initially, the surface is planar subject
to some small perturbations with wave numbers near �k1 ,k2�,

h�x,y� = − x + 

�k1�−k1��k1

0,�k2�−k2��k2
0

10−3

��k1� − k1�2 + �k2� − k2�2�3/2 + 1

�cos�k1�x + k2�y� , �36�

where �k1 ,k2� is a wave-number pair in the unstable region in
linear instability analysis, and k1

0 ,k2
0=1 or 2.

Figure 9 shows the evolution of a surface with parameters
�0=0.012, N=40, lt=50a, and �k1 ,k2�= �7,1� in the initial
perturbations in Eq. �36�. We plot the surface profiles, the
contour lines of the surface height which indicate the loca-
tions of steps, and a cross section of the surface for some
constant value of y. According to the linear instability analy-
sis, the step bunching instability dominates in this case. In
the very early stages of the evolution, both perturbations of
step bunching and step undulation grow �see Figs. 9�d�–9�f��,
which agrees with the linear instability analysis. Then step
bunching continues, and the steps become more and more
straight due to the nonlinear effect �see Figs. 9�g�–9�l��. After
all the steps become straight and only the step bunching
instability remains �see Figs. 9�m�–9�o��, we can see a rear-
rangement of step bunches �e.g., a contour line between x
=2 and x=3 moves from the bunch near x=3 to the bunch
near x=2 in Figs. 9�m�–9�o��.

Figure 10 shows the evolution of a surface with param-
eters �0=0.024, N=10, lt=50a, and �k1 ,k2�= �4,2� in the ini-
tial perturbations in Eq. �36�. As in the previous example, the
step bunching instability is also dominant according to the
linear instability analysis, and both perturbations of step
bunching and step undulation grow in the very early stages
of the simulation. However, unlike in the previous example,
the steps do not become straight in this case. This can be
understood by the fact that in this case, the misfit �0 is larger
than that in the previous example, and the destabilizing effect
of the misfit energy is stronger. It can also be seen that in the
last state shown in Fig. 10, the surface is divided into regions
where the steps are almost straight and step density is high
and regions where step density is low. If we focus on a cross
section of the surface along constant y, as shown in the right
column of the images, the surface still has the step bunching
morphology.

Figure 11 shows the evolution of a surface with param-
eters �0=0.024, N=20, lt=25a, and �k1 ,k2�= �3,3� in the ini-
tial perturbations in Eq. �36�. In this case, step undulation
instability is dominant according to the linear instability
analysis. We can see from the simulation that perturbations
of step undulation grow and no obvious step bunching insta-
bility is observed. However, if we focus on a cross section of
the surface along constant y, as shown in the right column of
the images in Fig. 11, the surface still has the step bunching
morphology.

We note that the final states in these simulations are not
equilibrium states. We stop the simulations when the equa-
tion becomes highly singular which makes simulations very
difficult. Developing efficient numerical schemes will be
done in future work.

In summary of this section, we see surface morphologies
of step bunching, step undulation, and combination of them
in the early stage of evolution of the surface in the nonlinear
regime in our simulations. It is interesting to see that along a
cross section perpendicular to the initially almost straight
steps, the surface takes the step bunching morphology even
though the overall two-dimensional morphology is step un-
dulation or combination of step bunching and undulation.

If we remove the two nonlinear terms with coefficient �3
in the evolution equation in Eq. �28�, it is very difficult to
obtain the step bunching morphology as shown in Fig. 9.
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This can be understood by the dispersion relation in Eq. �35�
as follows. When the surface is flat, locally lt is large and �1
is small �see Eq. �29��. If the terms with coefficient �3 are
removed, the stabilizing effect in the direction normal to the

almost straight step becomes very weak thus it is difficult
to maintain the step bunching surface morphology. This
shows that the additional nonlinear terms we obtained be-
sides the traditional continuum expression are also crucial to
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describe the morphology of stepped surfaces under elastic
effects in the nonlinear regime of evolution in 2+1 dimen-
sions, as the nonlinear term in the 1+1-dimensional model in
Ref. 35.

VII. CONCLUSIONS

In this paper, we present a 2+1-dimensional continuum
model for the long-range elastic interaction on stepped sur-
face of a strained film. The continuum model is derived rig-
orously from the discrete model for the interaction between
steps; thus it incorporates the discrete features of the stepped
surfaces. Examples of comparison show that our continuum
model, as an approximation to the discrete model, is much
more accurate than the traditional continuum approximation.
In the linear instability of a planar surface, our continuum
model gives the transition from step bunching instability to
step undulation instability as the distance between adjacent
steps increases, which agrees with the experimental observa-
tions and the results of discrete models, and which is missing
using the traditional continuum approximation. Numerical
simulations of the surface evolution in the nonlinear regime
using our model successfully show surface morphologies of

step bunching, step undulation, and their combination. The
additional nonlinear terms we obtained besides the tradi-
tional continuum expression are shown also to be crucial to
describe the step bunching surface morphology in the non-
linear regime of the surface evolution.

Future work may include generalization of our continuum
model under elastic anisotropy or other general conditions
and investigation on surface evolution using our continuum
model with anisotropic mobility42 or nucleation of
steps.19,23,33,46,55
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APPENDIX: DERIVATION OF THE CONTINUUM MODEL
FOR A CONICAL-STEPPED SURFACE

In this appendix, we present a derivation of the continuum
model for an axisymmetric conical-moundlike-stepped sur-
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FIG. 10. �Color online� Time evolution of the surface with parameters �0=0.024, N=10, lt=50a, and �k1 ,k2�= �4,2�. �a�–�c�: t=0; �d�–�f�:
t=0.12; �g�–�i�: t=0.1468. The left column of images shows the three-dimensional view, the column of images in the middle shows the
contour lines of the surface height which indicate the locations of steps, and the right column of images shows the cross section of the surface
at y=5.4.
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face, which consists of concentric circular steps separating
flat annular terraces as illustrated in Fig. 12. The circular
steps are labeled � j with radius rj, j=1,2 ,3. . ., respectively,

from the top of the surface. A point X= �x ,y� on step � j can
be written as �x ,y�= �rj cos � j ,rj sin � j�, where � j is the an-
gular coordinate of � j. Then the normal direction of the step
� j at this point is n j = �cos � j , sin � j�.

In the discrete model for the long-range elastic interaction
between steps, at a point on step �n on this axisymmetric
surface, the chemical potential given by Eqs. �18�–�20� can
be written as

�̃m
int�rn� = −

�1 − ���0
2a

�G


j�n

�K�mj�
rj + rn

+
E�mj�
rj − rn

� �A1�

and
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FIG. 11. �Color online� Time evolution of the surface with parameters �0=0.024, N=20, lt=25a, and �k1 ,k2�= �3,3�. �a�–�c�: t=0; �d�–�f�:
t=0.096; �g�–�i�: t=0.126; �j�–�l�: t=0.213. The left column of images shows the three-dimensional view, the column of images in the middle
shows the contour lines of the surface height which indicate the locations of steps, and the right column of images shows the cross section
of the surface at y=�.

FIG. 12. A conical-stepped surface.
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�̃m
self�rn� = −

�1 − ���0
2a

�G
�

−�

�

��
�� K�m
�

 + 2rn

+
E�m
�



�d
 ,

�A2�

where

K�m� = �
0

�/2 d�

�1 − m sin2 �
�A3�

and

E�m� = �
0

�/2
�1 − m sin2 �d� �A4�

are the complete elliptic integrals of the first and second
kinds, respectively,

mj =
4rnrj

�rn + rj�2 �A5�

and

m
 =
4rn�rn + 
�

�rn + �rn + 
��2 �A6�

in Eqs. �A1� and �A2�, respectively. As described in Sec. III,
the delta function ��
� in Eq. �A2� is a regularized Dirac
delta function whose width of regularization is of the order
of the lattice constant a. We further assume that ��
� has
compact support and ��−
�=��
�. By Eqs. �A1� and �A2�,
the total chemical potential given by Eq. �18� is

�̃m�rn� = −
�1 − ���0

2a

�G


j�n

�K�mj�
rj + rn

+
E�mj�
rj − rn

�
−

�1 − ���0
2a

�G
�

−�

�

��
�� K�m
�

 + 2rn

+
E�m
�



�d
 .

�A7�

Although Eq. �A7� gives an exact expression for the
misfit-induced long-range elastic interaction on a conical-
stepped surface, in the framework of a continuum model, the
conical-stepped-surface is described by a smooth profile h�r�
without resolving the details of the steps. The continuum
approximation of the chemical potential given by Eq. �15�
for this conical surface can be written as

�m
0 �rn� =

�1 − ���0
2

�G
�

0

�

h��r��K�m�
r + rn

+
E�m�
r − rn

�dr , �A8�

where

m =
4rnr

�rn + r�2 . �A9�

However, this expression does not incorporate the discrete
features of the stepped surface, as discussed in Secs. I and II.

In order to obtain a more accurate continuum approxima-
tion, we first rewrite the above integral �m

0 �rn� in Eq. �A8� as

�m
0 �hn� = −

�1 − ���0
2

�G
�

0

H � K�m�
r�h� + r�hn�

+
E�m�

r�h� − r�hn��dh ,

�A10�

by taking h instead of r as the independent variable, where H
is the height of the conical surface which is assumed to be
very large compared with the lattice constant a, and r�H�
=0. Then the discrete model �̃m�rn� given by Eq. �A7� can be
regarded as a numerical scheme of the continuum expression
�m

0 �hn� given by Eq. �A10�. Thus, the integral expression in
Eq. �A8� with the leading-order error terms of the numerical
scheme will give a more accurate continuum approximation
of the discrete model.

To find the error of the numerical scheme, we present the
following theorem, which is proved in Ref. 47 using the
theorems in Ref. 56.

Theorem (Ref. 47). Suppose that interval �b1 ,b2� is di-
vided into m subintervals with �x= �b2−b1� /m, xj =b1+ �j
−1��x, j=1, . . . ,m+1. Let G�x�=g1�x�log�x− t�+g2�x� / �x
− t�+g3�x� with t=xj0

for some j0, where g1�x�, g2�x�, and
g3�x� are twice continuously differentiable functions. Then

�
b1

b2

G�x�dx = �x�G�b1� + G�b2�
2

+ 

2�j�m,j�j0

G�xj��
+ �

t−�x/2

t+�x/2

G�x�dx − �log � − 1�g1�t��x

+ O��x2� . �A11�

Denote

G�h� =
K�m�

r�h� + r�hn�
+

E�m�
r�h� − r�hn�

�A12�

to be the integrand in the integral expression �m
0 �hn� in Eq.

�A10�, with

m =
4r�hn�r�h�

�r�hn� + r�h��2 . �A13�

Using Taylor expansions for the expressions in Eqs. �A12�
and �A13� at h=hn, and the following expansions which can
be obtained from the properties of K�m� and E�m� as m
→1 �Refs. 57 and 58� �m→1 when h→hn�:

K�m� = log
4

�1 − m�1/2 +
1

4
�log

4

�1 − m�1/2 − 1��1 − m�

+ O��1 − m�2 log�1 − m�� , �A14�

E�m� = 1 +
1

2
�log

4

�1 − m�1/2 −
1

2
��1 − m�

+ O��1 − m�2 log�1 − m�� , �A15�

we have
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G�h� =
1

rn�
�h − hn�−1 −

rn�

2�rn��
2 +

1

2rn
log

8rn

�rn���h − hn�
−

rn�

8rn
2

��h − hn�log
8rn

�rn���h − hn�

−
8rn

2rn� − 9�rn��
3 + 12rnrn�rn�

48�rnrn��
2 �h − hn� +

�rn��
2 − 2rnrn�

32rn
3

��h − hn�2log
8rn

�rn���h − hn�
+ O��h − hn�2� , �A16�

where rn�=r��hn� and rn�=r��hn�.
It can be seen that G�h� satisfies the conditions in the

above theorem. Applying the above theorem to the integral
in Eq. �A10� with �h=a, we have

�m
0 �rn� = −

�1 − ���0
2

�G �a�G�0� + G�H�
2

+ 

j�n

�K�mj�
rj + rn

+
E�mj�
rj − rn

�� + �
hn−�1/2�a

hn+�1/2�a

G�h�dh − �log � − 1�

�	−
1

2rn

a + O�a2�� . �A17�

Then using Eq. �A7�, we have the approximation

�̃m�rn� = �m
0 �rn� −

�1 − ���0
2a

�G
�

−�

�

��
�� K�m
�

 + 2rn

+
E�m
�



�d
 +

�1 − ���0
2

�G �a
G�0� + G�H�

2

+ �
hn−�1/2�a

hn+�1/2�a

G�h�dh +
1

2rn
�log � − 1�a + O�a2�� .

�A18�

Now we simplify the right-hand side of the above equa-
tion. First, we consider the integral involving delta function,
which is �̃m

self�rn� given by Eq. �A2�. By Taylor expansions at

=0 and using Eqs. �A14� and �A15�, we have

K�m
�

 + 2rn

+
E�m
�



= 
−1 +

1

2rn
log

8rn

�
�
−

1

8rn
2
 log

8rn

�
�
+

3

16rn
2


+
5

32rn
3
2 log

8rn

�
�
+ O�
2� .

Thus we have

�
−�

�

��
�� K�m
�

 + 2rn

+
E�m
�



�d
 =

1

2rn
log

8rn

rc
+ O�a3 log a� ,

�A19�

where rc is defined by log rc=�−�
� ��
�log�
�d
.

Next, we consider the integral of G�h� over the small
interval centered at hn on the right-hand side of Eq. �A18�.
Using Eq. �A16�, we have

�
hn−�1/2�a

hn+�1/2�a

G�h�dh = � 1

2rn
log

16rn

�rn��a
−

rn�

2�rn��
2 +

1

2rn
�a

+ O�a3 log a� . �A20�

Finally, we consider the terms G�0� and G�H� on the
right-hand side of Eq. �A18�. We neglect the effect of the
boundary by assuming that rn�0 and H→�. Thus when h
→0, r�h�→�, m=

4rnr�h�
�rn+r�h��2 →0, K�m�→K�0�= �

2 , and E�m�
→E�0�= �

2 ; thus we have

G�h� =
K�m�

r�h� + rn
+

E�m�
r�h� − rn

→ 0, �A21�

as h→0. When H→�, r�H�→0 and m→0; thus we have

G�H� →
�/2
rn

+
�/2
− rn

= 0, �A22�

as H→�.
Summarizing Eqs. �A18�–�A22�, using r as the indepen-

dent variable, we have

�̃m�rn� � �m
0 �rn� +

�1 − ���0
2a

2�G
	 1

rn
log

2�rc�h��rn��
a

+
h��rn�
h��rn�


 .

�A23�

The right-hand side of this equation is the continuum model
in Eq. �23�.

*maxiang@ust.hk
1 A. Pimpinelli and J. Villain, Physics of Crystal Growth �Cam-

bridge University Press, New York, 1998�.
2 H. Gao and W. D. Nix, Annu. Rev. Mater. Sci. 29, 173 �1999�.
3 L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect

Formation and Surface Evolution �Cambridge University Press,
New York, 2003�.

4 P. Müller and A. Saúl, Surf. Sci. Rep. 54, 157 �2004�.
5 W. W. Mullins, J. Appl. Phys. 28, 333 �1957�.
6 R. J. Asaro and W. A. Tiller, Metall. Trans. 3, 1789 �1972�.
7 M. A. Grinfeld, Sov. Phys. Dokl. 31, 831 �1986�.
8 D. J. Srolovitz, Acta Metall. 37, 621 �1989�.

9 B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett.
67, 3696 �1991�.

10 L. B. Freund and F. Jonsdottir, J. Mech. Phys. Solids 41, 1245
�1993�.

11 W. H. Yang and D. J. Srolovitz, Phys. Rev. Lett. 71, 1593
�1993�.

12 C. H. Chiu and H. Gao, Int. J. Solids Struct. 30, 2983 �1993�.
13 W. H. Yang and D. J. Srolovitz, J. Mech. Phys. Solids 42, 1551

�1994�.
14 B. J. Spencer and D. I. Meiron, Acta Metall. Mater. 42, 3629

�1994�.
15 Y. W. Zhang and A. F. Bower, J. Mech. Phys. Solids 47, 2273

ZHU, XU, AND XIANG PHYSICAL REVIEW B 79, 125413 �2009�

125413-14



�1999�.
16 Y. Xiang and W. E, J. Appl. Phys. 91, 9414 �2002�.
17 W. K. Burton, N. Cabrera, and F. Frank, Philos. Trans. R. Soc.

London, Ser. A 243, 299 �1951�.
18 V. I. Marchenko and A. Y. Parshin, Sov. Phys. JETP 52, 129

�1980�.
19 O. L. Alerhand, D. Vanderbilt, R. D. Meade, and J. D. Joannopo-

ulos, Phys. Rev. Lett. 61, 1973 �1988�.
20 J. M. Rickman and D. J. Srolovitz, Surf. Sci. 284, 211 �1993�.
21 J. Stewart, O. Pohland, and J. M. Gibson, Phys. Rev. B 49,

13848 �1994�.
22 R. V. Kukta and K. Bhattacharya, J. Mech. Phys. Solids 50, 615

�2002�.
23 J. Tersoff and E. Pehlke, Phys. Rev. Lett. 68, 816 �1992�.
24 J. Tersoff, Y. H. Phang, Z. Zhang, and M. G. Lagally, Phys. Rev.

Lett. 75, 2730 �1995�.
25 F. Liu, J. Tersoff, and M. G. Lagally, Phys. Rev. Lett. 80, 1268

�1998�.
26 C. Duport, P. Nozieres, and J. Villain, Phys. Rev. Lett. 74, 134

�1995�.
27 C. Duport, P. Politi, and J. Villain, J. Phys. I 5, 1317 �1995�.
28 B. Houchmandzadeh and C. Misbah, J. Phys. I 5, 685 �1995�.
29 F. Léonard and J. Tersoff, Appl. Phys. Lett. 83, 72 �2003�.
30 M. Ozdemir and A. Zangwill, Phys. Rev. B 42, 5013 �1990�.
31 V. M. Kaganer and K. H. Ploog, Phys. Rev. B 64, 205301

�2001�.
32 F. Lançon and J. Villain, Phys. Rev. Lett. 64, 293 �1990�.
33 V. B. Shenoy and L. B. Freund, J. Mech. Phys. Solids 50, 1817

�2002�.
34 Y. Xiang, SIAM J. Appl. Math. 63, 241 �2002�.
35 Y. Xiang and W. E, Phys. Rev. B 69, 035409 �2004�.
36 R. M. Tromp and M. C. Reuter, Phys. Rev. Lett. 68, 820 �1992�.
37 N. Israeli and D. Kandel, Phys. Rev. B 60, 5946 �1999�.
38 S. Paulin, F. Gillet, O. Pierre-Louis, and C. Misbah, Phys. Rev.

Lett. 86, 5538 �2001�.
39 D. Margetis, M. J. Aziz, and H. A. Stone, Phys. Rev. B 69,

041404�R� �2004�.
40 D. Margetis, M. J. Aziz, and H. A. Stone, Phys. Rev. B 71,

165432�R� �2005�.

41 D. Margetis, P. W. Fok, M. J. Aziz, and H. A. Stone, Phys. Rev.
Lett. 97, 096102 �2006�.

42 D. Margetis and R. V. Kohn, Multiscale Model. Simul. 5, 729
�2006�.

43 R. V. Kukta and K. Bhattacharya, Thin Solid Films 357, 35
�1999�.

44 V. B. Shenoy, Appl. Phys. Lett. 85, 2376 �2004�.
45 F. Haußer, M. E. Jabbour, and A. Voigt, Multiscale Model.

Simul. 6, 158 �2007�.
46 A. Ramasubramaniam and V. B. Shenoy, J. Appl. Phys. 95, 7813

�2004�.
47 H. Xu and Y. Xiang, SIAM J. Appl. Math. 69, 1393 �2009�.
48 G. Ehrlich and F. Hudda, J. Chem. Phys. 44, 1039 �1966�.
49 R. L. Schwoebel, J. Appl. Phys. 40, 614 �1969�.
50 G. S. Bales and A. Zangwill, Phys. Rev. B 41, 5500 �1990�.
51 K. L. Johnson, Contact Mechanics �Cambridge University Press,

New York, 1985�.
52 These values of g1 and g3 were used in the simulations using the

1+1-dimensional model in Ref. 33 and are consistent with the
atomistic calculations for steps on surfaces near �001� of Si
�Refs. 59–61�.

53 The behaviors when lt�2�rc /e are not shown in Fig. 7. When
lt�2�rc /e, the adjacent steps are in the core regions of each
other, more accurate results can be obtained by including the
atomistic information inside the core.

54 J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed.
�Dover, Mineola, 2001�.

55 R. M. Tromp and M. C. Reuter, Phys. Rev. B 47, 7598 �1993�.
56 A. Sidi and M. Israeli, J. Sci. Comput. 3, 201 �1988�.
57 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals

for Engineers and Scientists �Springer-Verlag, New York, 1971�.
58 E. T. Whittaker and G. N. Watson, A Course of Modern Analysis

�Cambridge University Press, England, 1990�.
59 T. W. Poon, S. Yip, P. S. Ho, and F. F. Abraham, Phys. Rev. B

45, 3521 �1992�.
60 H. J. W. Zandvliet, Rev. Mod. Phys. 72, 593 �2000�.
61 V. B. Shenoy, C. V. Ciobanu, and L. B. Freund, Appl. Phys. Lett.

81, 364 �2002�.

CONTINUUM MODEL FOR THE LONG-RANGE ELASTIC… PHYSICAL REVIEW B 79, 125413 �2009�

125413-15


